Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters








Language
Year range
1.
Asian Pacific Journal of Tropical Biomedicine ; (12): 156-163, 2022.
Article in Chinese | WPRIM | ID: wpr-950195

ABSTRACT

Objective: To evaluate the antinociceptive activity of perillyl acetate in mice and in silico simulations. Methods: The vehicle, perillyl acetate (100, 150 and/or 200 mg/kg, i.p.), diazepam (2 mg/kg, i.p.) or morphine (6 mg/kg, i.p.) was administered to mice, respectively. Rotarod test, acetic acid-induced abdominal writhing, formalin-induced nociception, hot plate test, and tail-flick test were performed. Opioid receptors-involvement in perillyl acetate antinociceptive effect was also investigated. Results: Perillyl acetate did not affect the motor coordination of mice. However, it reduced the number of acetic acid-induced abdominal twitches and licking times in the formalin test. There was an increase of latency time in the tail-flick test of 30 and 60 minutes. Pretreatment with naloxone reversed the antinociceptive effect of perillyl acetate (200 mg/kg). In silico analysis demonstrated that perillyl acetate could bind to μ-opioid receptors. Conclusions: Perillyl acetate has antinociceptive effect at the spinal level in animal nociception models, without affecting the locomotor integrity and possibly through μ-opioid receptors. In silico studies have suggested that perillyl acetate can act as a μ-opioid receptor agonist.

2.
Asian Pacific Journal of Tropical Medicine ; (12): 156-163, 2022.
Article in Chinese | WPRIM | ID: wpr-941586

ABSTRACT

Objective: To evaluate the antinociceptive activity of perillyl acetate in mice and in silico simulations. Methods: The vehicle, perillyl acetate (100, 150 and/or 200 mg/kg, i.p.), diazepam (2 mg/kg, i.p.) or morphine (6 mg/kg, i.p.) was administered to mice, respectively. Rotarod test, acetic acid-induced abdominal writhing, formalin-induced nociception, hot plate test, and tail-flick test were performed. Opioid receptors-involvement in perillyl acetate antinociceptive effect was also investigated. Results: Perillyl acetate did not affect the motor coordination of mice. However, it reduced the number of acetic acid-induced abdominal twitches and licking times in the formalin test. There was an increase of latency time in the tail-flick test of 30 and 60 minutes. Pretreatment with naloxone reversed the antinociceptive effect of perillyl acetate (200 mg/kg). In silico analysis demonstrated that perillyl acetate could bind to μ-opioid receptors. Conclusions: Perillyl acetate has antinociceptive effect at the spinal level in animal nociception models, without affecting the locomotor integrity and possibly through μ-opioid receptors. In silico studies have suggested that perillyl acetate can act as a μ-opioid receptor agonist.

SELECTION OF CITATIONS
SEARCH DETAIL